Noninvasive Ventilation in the Home

Ron Hosp, MS-HSA, RRT
Regional Respiratory Specialist

This program has been approved for 1 hour of continuing education credit.
Course Objectives

• Identify at least four goals of home NIV
• Identify candidates for home NIV therapy
• Explain the use of NIV in chronic respiratory insufficiency
• Describe the protocol for initiation and management of NIV.
Noninvasive ventilation refers to the delivery of mechanical ventilation to the lungs using techniques that do not require an artificial airway.
Advantages of Home Noninvasive Ventilation

• Ease of use
• Reduced need for skilled caregivers
• Elimination of tracheostomy-related complications
• Improved patient comfort
• Allows speech, improved communication
• Lower overall cost of care
Clinical Application of NIV

- Patient selection
- Equipment Selection
- Titration
- Mask fitting
- Monitoring
The Use of NIV in Chronic Respiratory Insufficiency
What is Chronic Respiratory Insufficiency?

Chronic respiratory insufficiency is the inability to adequately provide oxygen to the cells and eliminate carbon dioxide from them. This may result from different diseases.

- Decreased PaO_2 (hypoxemia)
- Increased PaCO_2 (hypercapnia)
Consequences of Respiratory Insufficiency

- Excessive work of breathing
- Respiratory muscle dysfunction
- Inadequate alveolar ventilation
- Severe hypoxemia
Treatment of Respiratory Insufficiency

Noninvasive Ventilation

• Acute Respiratory Insufficiency

• Chronic Respiratory Insufficiency
Goals of Noninvasive Ventilation

- Relieve symptoms
- Reduce work of breathing
- Improve or stabilize gas exchange
- Improve duration and quality of sleep
- Maximize quality of life
- Prolong survival

Nicholas Hill, Noninvasive Positive Pressure Ventilation: Principles and Applications
COPD and NIV
“Chronic obstructive pulmonary disease (COPD) is a preventable and treatable disease state characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and is associated with an abnormal inflammatory response of the lungs to noxious particles or gases, primarily caused by cigarette smoking. Although COPD affects the lungs, it also produces significant systemic consequences”

ATS/ERS Task Force 2004
COPD Patient

- FEV1/FVC < 70%
- FEV1/FVC < 30%

<table>
<thead>
<tr>
<th>Mild stage</th>
<th>Moderate stage</th>
<th>Severe stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild airflow limitation</td>
<td>Worsening airflow limitation</td>
<td>Severe airflow limitation</td>
</tr>
</tbody>
</table>

Drugs and Pulmonary Rehabilitation

- Long Term Oxygen Therapy
- Noninvasive Ventilation

As the disease progresses, hypoxemia occurs and hypercapnia is seen in advanced disease.

Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease
Gold Scientific Committee, NHLBI/WHO workshop summary, AJRCCM 2001
COPD patients who may benefit from NIV

- Severe COPD and persistent symptoms despite medical therapy
- Substantial daytime CO₂ retention PaCO₂ > 55 mm Hg or
- PaCO₂ of 50-54 mmHg and hospitalization related to recurrent episodes of hypercapnic respiratory **insufficiency** (> 2 episodes in 1 year)
- Nocturnal oxygen desaturation: SaO₂ < 88% for > 5 min sustained while receiving oxygen therapy
- Motivated patient
Restrictive Patients and NIV
Restrictive Thoracic Disorders

- Chest wall deformities (Kyphoscoliosis)
- Neuromuscular disease (Muscular Dystrophy Amyotrophic Lateral Sclerosis, ALS)
- Central hypoventilation syndromes
Restrictive Patients
Pathology Progression

- Mild stage
- Moderate stage
- Severe stage

Physical Therapy
Noninvasive Ventilation
Invasive ventilation

- Respiratory muscle weakness
- Sleep-disordered breathing
- Cor pulmonale
- Oxygen desaturation during exercise

Source: Consensus Conference, Chest 1999
Indications for NIV

Symptoms
- Worsening of dyspnea or orthopnea
- Morning headaches
- Daytime hypersomnolence

Physiological Criteria
- Vital capacities below 50%
- Maximal inspiratory force less than 60 cm H$_2$O
Additional Indications for NIV

- Intact Upper Airway Function
- No Bullous Lung Disease
- Cooperative and Motivated
- Minimal Secretions or a Means to Remove Them
Home Ventilator Selection
Home Ventilator Selection

Portable Pressure-Limited Ventilators

Portable Volume-Limited Ventilators

Portable Volume/Pressure Support Ventilators
Home Ventilator Selection

Performance Capabilities

• Modes
• Leak Compensation
• Rise Time
• Ramp
• Sensitivity
• Average Volume Assured Pressure Support
Performance Capabilities

AVAPS

--- IPAP Setting

Pressure

----- Desired Volume

Volume
Implementing Therapy
Initiation of NIV

- Hospital
- Home
- Sleep lab
- Physician office or clinic
Initiation of Successful NIV

Educate

• Explain NIV and the purpose of the mask
• Permit the patient to hold the mask
• Answer the patient’s questions
• Attempt to ease the patient’s anxiety
• Coach and encourage the patient
Initiation of Successful NIV

Properly size and fit the patient

Nasal Pillows
Nasal Mask
Full Face Masks
Initiation of Successful NIV

- Properly size and fit the patient
- Use the smallest mask possible
- Have the patient hold the mask to his/her face as therapy is applied
- Adjust headgear to minimize leaks
- Allow time for the patient to assimilate
Initiation of Successful NIV

Suggested Titration – Setting Pressures

- Ask the patient to sit or lay comfortably
- Initial settings
 1. EPAP: 4-5 cm H₂O
 2. IPAP: 8-10 cm H₂O
 3. Look at the patient
Titration – Set Respiratory rate

Set back up rate 2 to 3 breaths below patient spontaneous breathing

Respiratory rate back up objective:
• Maintain efficient ventilation during central episodes
• Decrease work of breathing and maximize respiratory muscle rest

Obstructive Patient
- Ti from 25 to 33%

Restrictive Patient
- Ti from 33 to 50%

$Ti \text{ (Second)} = \frac{60}{RR} \times \% Ti$
Titration – Set Rise Time

Rise Time — time from EPAP to IPAP

Obstructive patients: prefer short rise time from 100ms to 400ms (from 1 to 4)

Restrictive patients: prefer longer rise time from 300ms to 600ms (from 3 to 6)

Warning: long rise time with high respiratory rate maybe not compatible
Titration – Ramp

Ramp is a feature that comfortably and progressively delivers pressure to the patient.

- Starting pressure
- Time

EPAP and IPAP gradually increase to the prescribed levels during the set time.
Set Alarms

• Disconnect Alarm
• Apnea Alarm
• Tidal Volume Alarm
• Low Minute Ventilation
Initiation of Successful NIV

Monitor Effectiveness of Therapy

• Compliance
• Patient comfort/interface
• Assess Waveforms, if available
• Add humidification as indicated
• Patient ventilator synchrony
• Improve gas exchange
• Relief of patient’s symptoms
• Measure quality-of-life outcomes
NIV Complications
Mask Issues Related to NIV Use

<table>
<thead>
<tr>
<th>Problem</th>
<th>Occurrence</th>
<th>Recommended Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discomfort</td>
<td>30-50%</td>
<td>Check fit, adjust straps, change interface</td>
</tr>
<tr>
<td>Excessive air leaks</td>
<td>80-100%</td>
<td>Realign interface, check strap tension, change to full face mask</td>
</tr>
<tr>
<td>Nasal bridge redness or ulceration</td>
<td>5-10%</td>
<td>Use artificial skin, minimize strap tension, use spacer, alternate interface</td>
</tr>
<tr>
<td>Rashes</td>
<td>5-10%</td>
<td>Use skin barrier lotion and/or topical corticosteroids, change to interface made from a different material</td>
</tr>
<tr>
<td>Claustrophobic reactions</td>
<td>5-10%</td>
<td>Reassure, try nasal interface or mouth piece</td>
</tr>
</tbody>
</table>
Pressure/Flow Issues Related to NIV Use

<table>
<thead>
<tr>
<th>Problem</th>
<th>Occurrence</th>
<th>Recommended Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discomfort – too much pressure</td>
<td>20-50%</td>
<td>Reduce IPAP</td>
</tr>
<tr>
<td>Sinus and ear pain</td>
<td>10-20%</td>
<td></td>
</tr>
<tr>
<td>Gastric insufflation</td>
<td>30-40%</td>
<td>Reduce pressure</td>
</tr>
<tr>
<td>Nasal/oral congestion</td>
<td>50%</td>
<td>Humidification, topical steroids, decongestants</td>
</tr>
<tr>
<td>Nasal/oral dryness</td>
<td>30-50-%</td>
<td>Reassure, try nasal interface or mouth piece</td>
</tr>
<tr>
<td>Eye irritation</td>
<td>33%</td>
<td>Reduce air leakage, adjusting strap tension, change masks</td>
</tr>
</tbody>
</table>
Major Complications

- Aspiration Pneumonia
- Hypotension
- Barotrauma
NIV Reimbursement in the Home

Driven by Medicare policy

Three categories of equipment

1. Respiratory Assist Devices (RADs) without a rate
2. Respiratory Assist Devices with a rate
3. Pressure Support Ventilator – Non-invasive or Invasive
NIV Reimbursement in the Home

Driven by Medicare policy

Five clinical categories

1. Restrictive thoracic disorders
2. COPD
3. Advancing Neuromuscular Disease
4. Central/complex sleep apnea
5. Obstructive sleep apnea
Study Supporting NIV Therapy in ALS

Effect of NIV assessed on QOL and survival in ALS patients

- 92 patients assessed every 2 months and randomly assigned to NIV or standard care
- 2 different QOL outcome scales were used

Results:

- NIV improved QOL and survival in all patients and in the subgroup who had better bulbar function
- The subgroup showed improvement in several measures of QOL and a median survival benefit of 205 days
- NIV improved some QOL indices in those with poor bulbar function, but conferred no survival benefit

- Bourke, SC. Et al., Lancet Neurology. 2006
Efficacy Of NIV Therapy in Central Hypoventilation

- 54 patients with obesity hypoventilation syndrome (OHS) treated with NIV to assess short and long-term effects
- Outcome measures were survival, clinical status and ABG results
- Follow-up period (50 months)

Results
- \(\text{PaO}_2 \) increased and \(\text{CO}_2 \) decreased
- Improved subjective sleepiness and decrease in dyspnea in all but 4 patients
- 3 patients died during follow-up period

Efficacy Of NIV Therapy in Central Hypoventilation

Conclusion

• NIV therapy is effective in the treatment of patients with OHS and provided a significant improvement in clinical status and gas exchange.

Studies Demonstrating Success of NIV Therapy in Severe but Stable COPD

18 patients in 3 month cross-over trial received Bi-level ventilation spontaneous mode pressures of 18/2 cm H$_2$O

Results
• Showed a reduction in daytime PaCO$_2$, desaturations, and episodes of hypoventilation

Conclusion
• NIV improved sleep quality and nocturnal gas exchange and enhanced quality of life

Summary

- Goals
- Patient Selection
- Benefits
- Interface
- Ventilator Choice