Respiratory failure... What a Respiratory Therapist need to know

Abhisekh Sinha Ray, MD Fellow, Critical Care Medicine Creighton University

Respiratory failure

- Defined as the inability of the respiratory system to meet the oxygenation, ventilation or metabolic needs of the body
- Classification:
 - Туре I Нурохетіс
 - Type 2 Hypercapnic with or without hypoxemia

 Could be acute or chronic or acute on chronic

Parillo JE, Dellinger RP. Critical Care Med-Principles of diagnosis and management in adult. 4th Ed.

	Hypoxemic respiratory failure	Hypercapnic respiratory failure
Criteria	$PaO_2 < 60/ SpO_2 < 90\%$ while on FiO ₂ >0.5 Or $PaO_2 < 40$ on any FiO ₂	Acute: PaCO2> 50 Or In acute on chronic: PaCO2 above baseline with concurrent serum pH<7.3
Causes	V/Q mismatch R→L shunt Alveolar hypoventilation Diffusion defect Inadequate FiO ₂	Pump failure (↓drive, muscles fatigue/ ↑WOB) f CO2 production R→L shunt f Dead-space

Hypoxic & Hypercapnic respiratory failure- criteria & etiologies

Strategies to prevent intubation

HFBVS. NIV

Figure 6. NIV vs usual care (overall) - Need for endotracheal intubation

	NIV	1	Usual o	care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Avdeev 1998	3	29	8	29	4.2%	0.38 [0.11, 1.27]	
Barbe 1996	0	14	0	10		Not estimable	
Bott 1993	0	30	2	30	1.3%	0.20 [0.01, 4.00]	· · · ·
Brochard 1995	11	43	31	42	16.7%	0.35 [0.20, 0.60]	-
Carrera 2009	5	37	13	38	6.8%	0.40 [0.16, 1.00]	
Celkel 1998	1	15	2	15	1.1%	0.50 [0.05, 4.94]	
Collaborative 2005	6	100	17	91	9.5%	0.32 [0.13, 0.78]	
del Castillo 2003	1	20	3	21	1.6%	0.35 [0.04, 3.09]	
Dikensoy 2002	2	17	7	17	3.7%	0.29 [0.07, 1.18]	
Khilnani 2010	3	20	12	20	6.4%	0.25 [0.08, 0.75]	
Kramer 1995	1	11	8	12	4.1%	0.14 [0.02, 0.92]	
Liu 2005	2	18	8	18	4.2%	0.25 [0.06, 1.02]	
Matuska 2006	3	30	10	30	5.3%	0.30 [0.09, 0.98]	
Plant 2001	18	118	32	118	17.0%	0.56 [0.34, 0.94]	
Samaria 2009	4	20	11	20	5.8%	0.36 [0.14, 0.95]	
Thys 2002	0	7	5	5	3.3%	0.07 [0.00, 1.01]	
Zhou 2001	7	30	17	30	9.0%	0.41 [0.20, 0.85]	
Total (95% CI)		559		546	100.0%	0.36 [0.28, 0.46]	•
Total events	67		186				
Heterogeneity: Chi2 =	6.68, df	= 15 (8	P = 0.97	$(1^2 = 0)$	66		0.005 0.1 1 10 20
Test for overall effect:	Z = 8.22	2 (P < 0	.00001)				0.005 0.1 1 10 20 Lower with NIV Lower with usual care

Figure 3. NIV vs usual care (overall) - Mortality

	NIV	1	Usual	care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Avdeev 1998	3	29	9	29	11.5%	0.33 [0.10, 1.11]	
Barbe 1996	0	14	0	10		Not estimable	
Brochard 1995	4	43	12	42	15.6%	0.33 [0.11, 0.93]	
Celkel 1998	0	15	1	15	1.9%	0.33 [0.01, 7.58]	
Collaborative 2005	5	100	8	91	10.7%	0.57 [0.19, 1.68]	
Dikensoy 2002	1	17	2	17	2.6%	0.50 [0.05, 5.01]	
Khilnani 2010	3	20	2	20	2.6%	1.50 [0.28, 8.04]	
Liu 2005	1	18	3	18	3.8%	0.33 [0.04, 2.91]	
Matuska 2006	7	30	7	30	9.0%	1.00 [0.40, 2.50]	
Plant 2001	12	118	24	118	30.8%	0.50 [0.26, 0.95]	
Samaria 2009	4	20	8	20	10.3%	0.50 [0.18, 1.40]	
Thys 2002	2	10	1	10	1.3%	2.00 [0.21, 18.69]	
Total (95% CI)		434		420	100.0%	0.54 [0.38, 0.76]	•
Total events	42		77				-
Heterogeneity: Chi2 =	6.36, df	= 10 (8	P = 0.78	$ ^2 = 0$	66		0.01 0.1 1 10 100
Test for overall effect:	Z = 3.49	9 (P = 0	0.0005)				Lower with NIV Lower with usual care

NIV in hy⊅erca⊅nic res⊅iratory failure

Decreases intubation rate

- Decreases mortality
- Decreases respiratory rate/WOB
- Increases $V_T \& MV$
- Decreases ICU/ hospital LOS

Osadnik CR, Tee VS, Carson-Chahhoud KV, Picot J, Wedzicha JA, Smith BJ. Non-invasive ventilation for the management of acute hypercaphic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database of Systematic Reviews 2017, Issue 7. Art. No.: CD004104. DOI: 10.1002/14651858.CD004104.pub4.

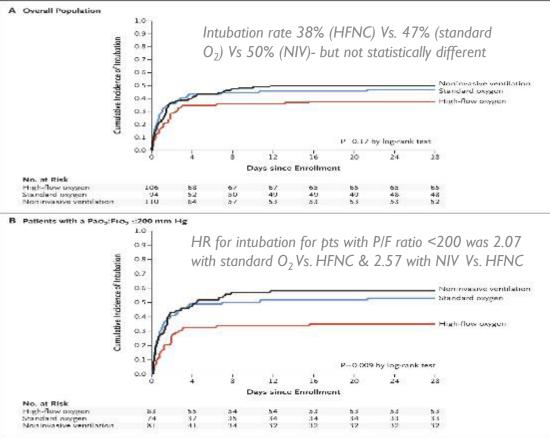
N Engl J Med 2015; 372:2185-2196

the NEW ENGLAND FOURNAL of MEDICINE ORIGINAL ARTICLE

High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

Jean-Pierre Frat, M.D., Arnaud W. Thille, M.D., Ph.D., Alain Mercat, M.D., Ph.D., Christophe Girault, M.D., Ph.D., Stéphanie Ragot, Pharm.D., Ph.D., Sébastien Perbet, M.D., Gwénael Prat, M.D., Thierry Boulain, M.D., Elise Morawiec, M.D., Alice Cottereau, M.D., Jérôme Devaquet, M.D., Saad Nseir, M.D., Ph.D., et al., for the FLORALI Study Group and the REVA Network*

RCT of 310 pts with $PaO_2/FiO_2 < 300$

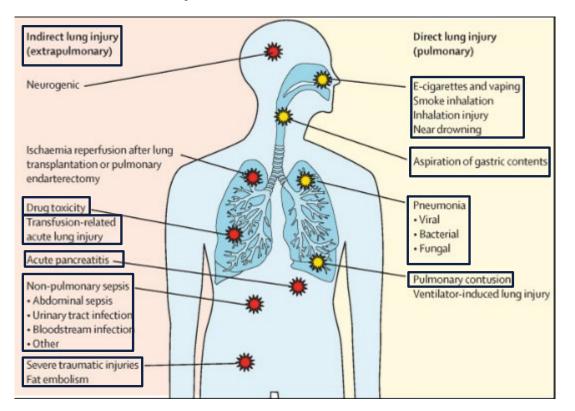

Protocol:

1:1:1 HFNC: Standard O₂: NIV

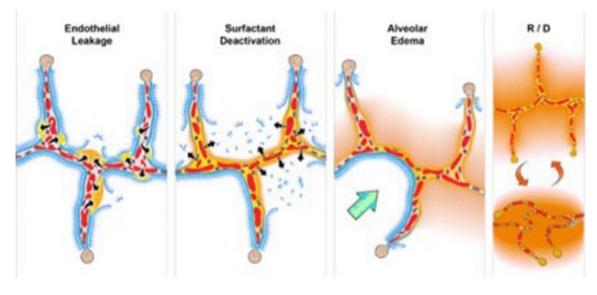
Results:

HR for death at 90 days 2.01 with standard O_2 Vs. HFNC (p=0.046) & 2.50 with NIV Vs. HFNC (p=0.006)

HFNC also had higher ventilator-free days compared to standard O_2 & NIV



Ventilator management in ARDS


Where less is more

Acute Respiratory Distress Syndrome

Multiple different insults

Same pathophysiologic consequence

- ✤ Gas-exchange problem (V/Q mismatch)
- Decreased compliance (Stiff lungs)
- Elevated pulmonary vascular resistance/R +L shunt

Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes. The Lancets. ACUTE RESPIRATORY DISTRESS SYNDROME 2022 VOLUME 400, ISSUE 10358, P1145-1156, OCTOBER 01, 2022

ARDS- Incidence

ARDS is common

0.42 cases per ICU bed over 4 weeks10.4% of all ICU admissions23.4% of patients requiring MV

But.....often unrecognized

Only 51.3% mild ARDS and 78.5% of severe ARDS were clinically recognized

Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries Bellani et al. JAMA, 2016; 315:788

Acute onset: ≤ *I* week from insult or new/worsening symptoms

Chest Imaging: bilateral, not explained by alternative etiologies

Origin of edema: not fully explained by cardiac/fluid overload

• If no ARDS risk factor, need objective assessment

Hypoxia: PaO_2/FiO_2 ratio <300 while on $PEEP \ge 5$ cm H_2O

- Mild: 201-300 mm Hg
- Moderate: 101-200 mm Hg
- Severe: ≤ 100 mm Hg

BERLIN definition of ARDS

ARDS-Net JAMA. 2012;307:2526

Treatment of ARDS

Improve gas exchange by reducing shunt fraction

- Lung-protective ventilation
- Prone positioning
- Negative fluid balance
- Pulmonary vasodilators

Increase O2 delivery

- Improve cardiac filling
- Inotropes
- Maintain adequate Hgb

Decreased O2 consumption

- Mechanical ventilation
- Sedation/ Paralysis
- Avoidance of fever

Avoidance of further injury

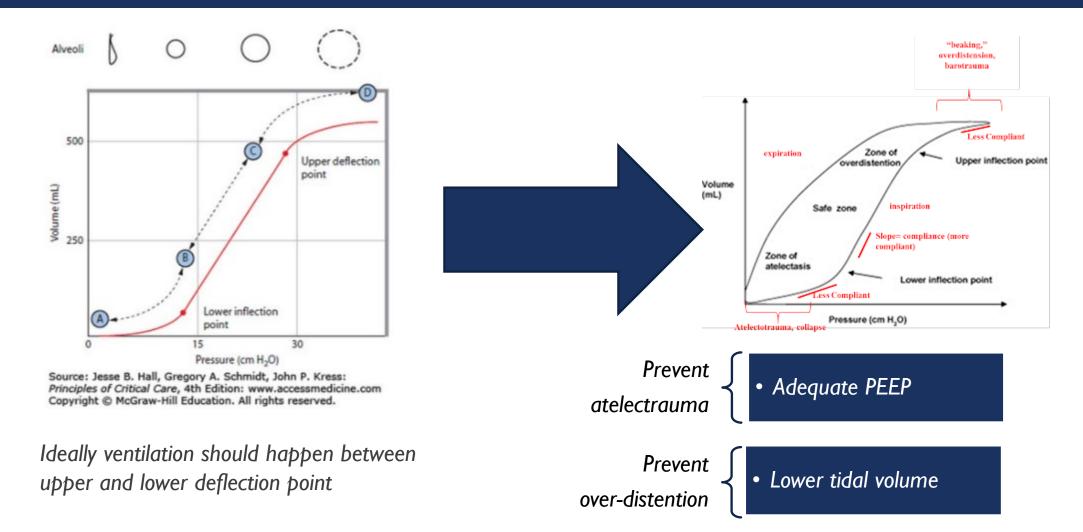
- Lung-protective ventilation
- Prone positioning
- Judicious transfusion

Lungprotective ventilator strategy

Lower Tidal Volume 4-8 mL/Kg of IBW

Adequate PEEP-

How much is enough?



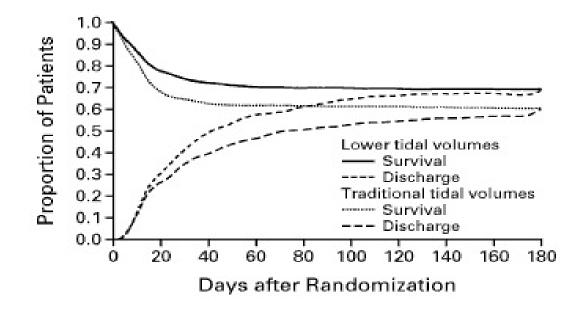
Limit Pplat <30 cm of H_2O

Lower Driving Pressure <15 cm of H₂O

How could ventilation strategy protect lung?

08

ORIGINAL ARTICLE


Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome

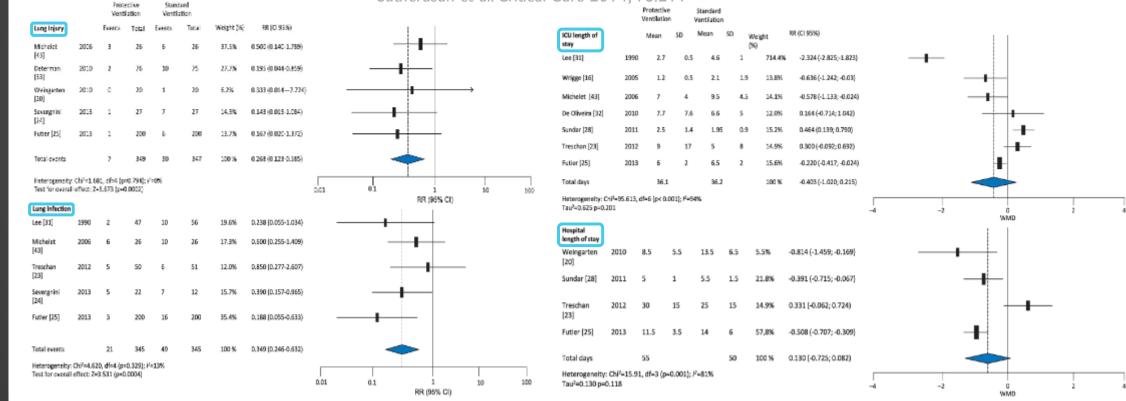
> The Acute Respiratory Distress Syndrome Network* N Engl J Med 2000; 342:1301-1308

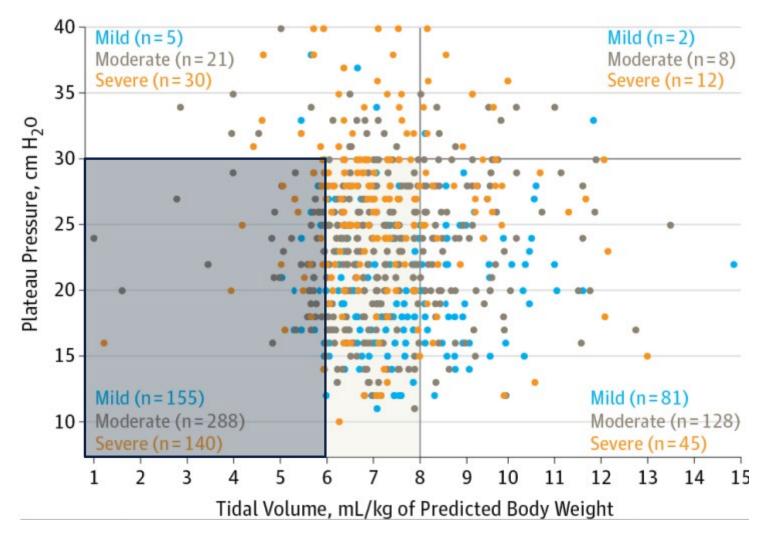
861 patients with ALI/ARDS Higher (12 mL/Kg IBW) Vs. Lower tidal-volume (6 mL/Kg IBW)

the NEW ENGLAND

OURNAL of MEDICINE

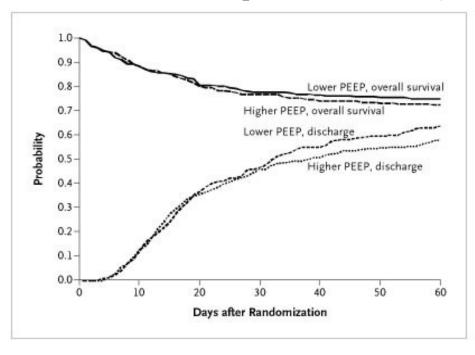
GROUP GROUP RECENING RECEINING LOWER TIDAL TRADITIONAL P VALUE VARIABLE TIDAL VOLUMES VOLUMES Death before discharge home 31.0 39.8 0.007 and breathing without assistance (%) Breathing without assistance 65.7 55.0 < 0.001by day 28 (%) No. of ventilator-free days, 12 ± 11 10 ± 11 0.007 days 1 to 28 Barotrauma, days 1 to 28 (%) 1011 0.43 No. of days without failure 15 ± 11 12 ± 11 0.006 of nonpulmonary organs or systems, days 1 to 28


TABLE 4. MAIN OUTCOME VARIABLES.*


REVIEW

Protective mechanical ventilation in the non-injured lung: review and meta-analysis

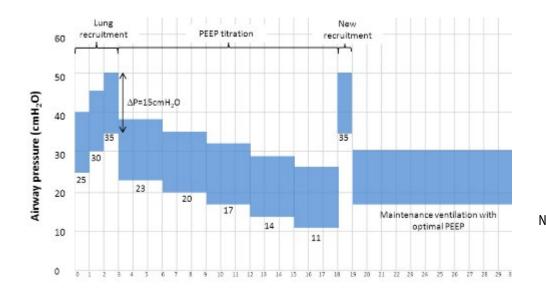
Sutherasan et al. Critical Care 2014, 18:211

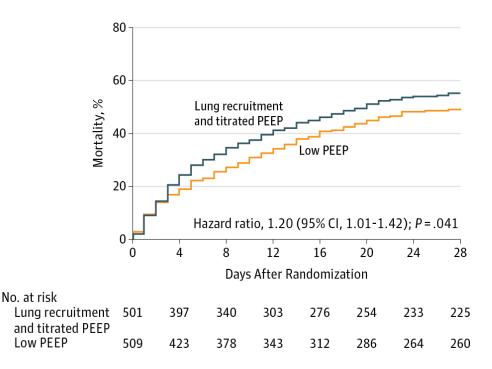

Distribution of tidal volume vs plateau pressure on day 1 by ARDS severity

Current practice of mechanical ventilation in ARDS

Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries Bellani et al. JAMA, 2016; 315:788

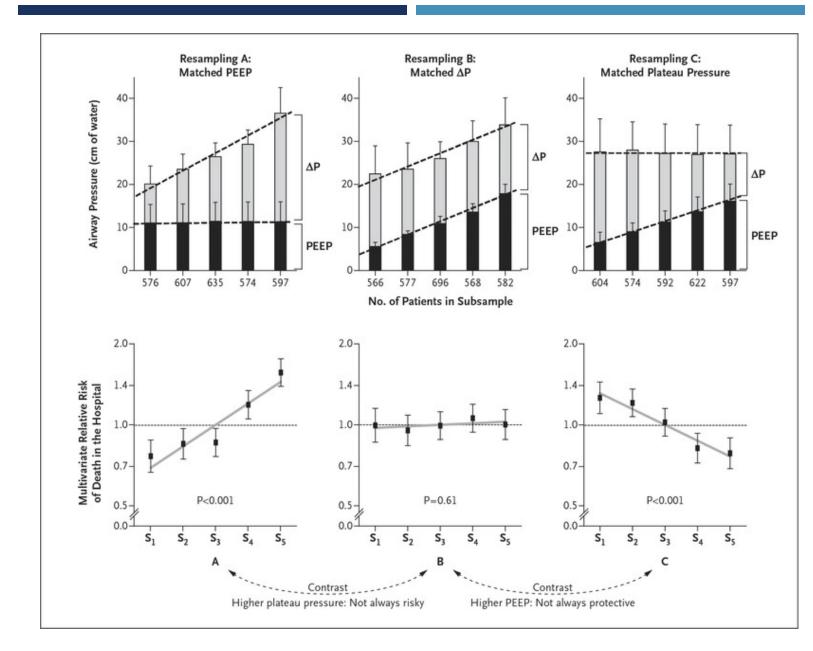
RCT of 549 patients with ALI/ARDS Mean PEEP of 8.3 cm H_2O in the lower-PEEP group Vs. I 3.2 cm H_2O in the higher-PEEP group

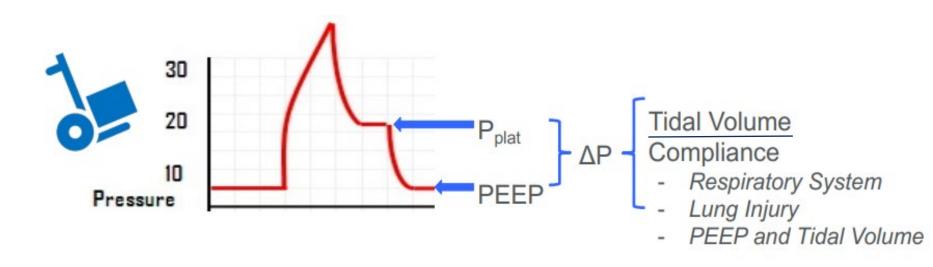



Outcome	Lower-PEEP Group	Higher-PEEP Group	P Value
Death before discharge home (%)†			
Unadjusted Adjusted for differences in baseline covariates	24.9 27.5	27.5 25.1	0.48 0.47
Breathing without assistance by day 28 (%)	72.8	72.3	0.89
No. of ventilator-free days from day 1 to day 28‡	14.5±10.4	13.8±10.6	0.50
No. of days not spent in intensive care unit from day 1 to day 28	12.2±10.4	12.3±10.3	0.83
Barotrauma (%)§	10	11	0.51
No. of days without failure of circulatory, coagulation, hepatic, and renal organs from day 1 to day 28	16±11	16±11	0.82

Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome A Randomized Clinical Trial

Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators

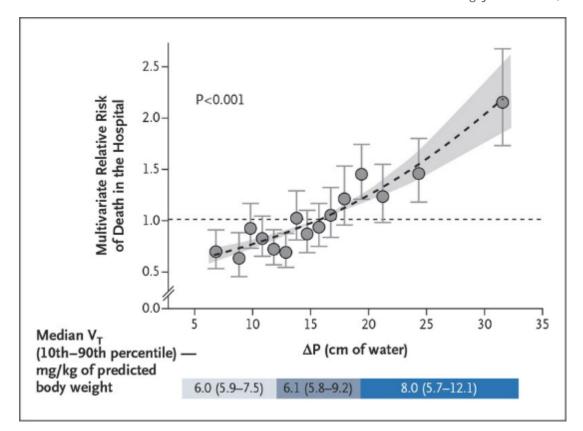

RCT of 1013 patients with P/F ratio <200 ARDS-NetVs. recruitment & titrated PEEP


Time (minutes)

JAMA. 2017;318(14):1335-1345. doi:10.1001/jama.2017.14171

Which pressure matters most in ARDS ?

What is Driving pressure (ΔP) ?


☆ ΔP = V_T/Lung compliance
 ❖ Independent predictor of survival

SPECIAL ARTICLE

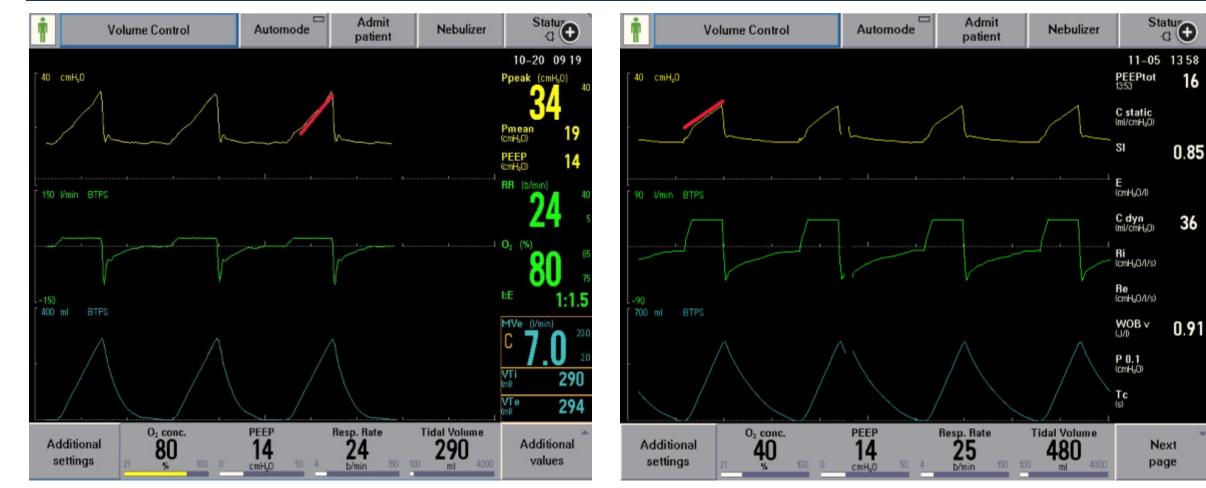
The NEW ENGLAND JOURNAL of MEDICINE

Driving Pressure and Survival in the Acute Respiratory Distress Syndrome

Marcelo B.P. Amato, M.D., Maureen O. Meade, M.D., Arthur S. Slutsky, M.D., Laurent Brochard, M.D., Eduardo L.V. Costa, M.D., David A. Schoenfeld, Ph.D., Thomas E. Stewart, M.D., Matthias Briel, M.D., Daniel Talmor, M.D., M.P.H., Alain Mercat, M.D., Jean-Christophe M. Richard, M.D., Carlos R.R. Carvalho, M.D., et al. N Engl | Med 2015; 372:747-755

How do we know we are protecting lung?

Stress Index can be of help.


The pattern of change in airway pressure with volume-control ventilation using a constant inspiratory flow rate (square wave pattern)

Provides clues as to the likelihood of overinflation.

• A concave upward contour of airway pressure vs time suggests overinflation is present, because proportionally higher pressure is required to complete lung inflation.

Stress Index

Red line concave upward tracing. Stress index slightly >1.0.

Red line concave downward tracing. Stress index slightly <1.0.

16

36

Possible benefits of prone positioning include

- Reduced risk of ventilator-induced lung injury
- Less lung compression and more efficient gas exchange in the lungs
- Improved heart function and oxygen delivery to the body
- Better drainage of secretions produced in diseased lungs

All patients placed in prone position should be monitored carefully for worsening respiratory status and symptoms.

Prone positioning

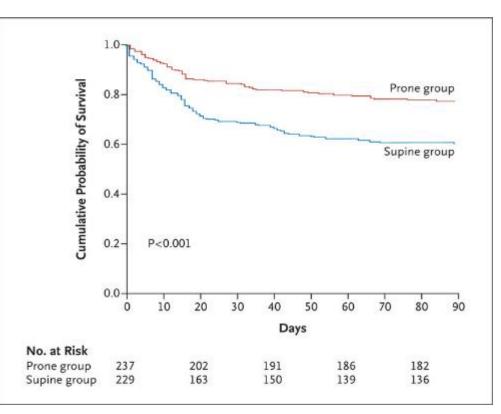
🚱 12 NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Prone Positioning in Severe Acute Respiratory Distress Syndrome

Claude Guérin, M.D., Ph.D., Jean Reignier, M.D., Ph.D., Jean-Christophe Richard, M.D., Ph.D., Pascal Beuret, M.D., Arnaud Gacouin, M.D., Thierry Boulain, M.D., Emmanuelle Mercier, M.D., Michel Badet, M.D., Alain Mercat, M.D., Ph.D., Olivier Baudin, M.D., Marc Clavel, M.D., Delphine Chatellier, M.D., et al., for the PROSEVA Study Group* N Engl J Med 2013; 368:2159-2168

RCT of 466 patients


Eligibility Criteria: severe ARDS (P/F<150 mm Hg) AND FiO2 >0.6, PEEP >5 cm of $H_2O, V_T \sim 6$ ml/Kg of IBW

Protocol:

Proned for at-least 16 hours using regular hospital bed

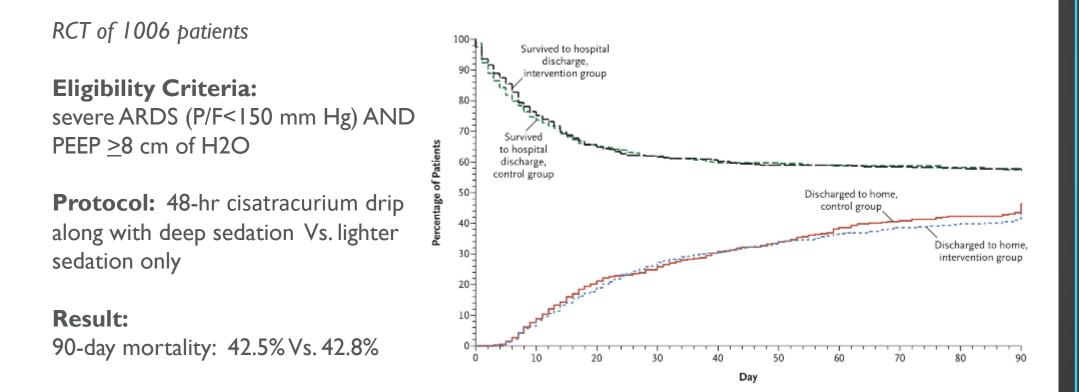
Result:

28-day mortality: 16% Vs. 32.8%

Initial ACURASYS trial showed improvement in adjusted 90-day mortality in patients with severe ARDS.

Despite that, neuro-muscular blockers (NMB) were not adopted widely, perhaps due to poor confidence in the validity of the results and persistent concerns regarding adverse effects of NMBs.

Is paralytics the answer?



12 NEW ENGLAND JOURNAL of MEDICINE ORIGINAL ARTICLE

Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome

The National Heart, Lung, and Blood Institute PETAL Clinical Trials Network*

N Engl J Med 2019; 380:1997-2008

Inhaled pulmonary vasodilator

Deaths/natients

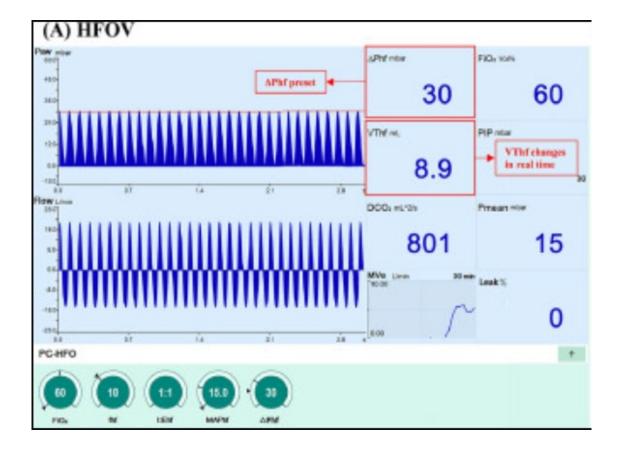
	randomi		Risk ratio	Weight	Risk ratio									
Study	Nitric oxide	Control	(95% CI)	(%)	(95% CI)	N	o with renal dy patients ran		n/					
Dellinger ^{w3}	35/120	17/57		11.2	0.98 (0.60 to 1.59)						Risk rat		Weight	
Michael ^{w4}	11/20	9/20		6.8	1.22 (0.65 to 2.29)	Study	Nitric oxide	Control			(95% C	0	(%)	(95% CI)
Troncy ^{w5}	9/15	8/15		6.7	1.13 (0.60 to 2.11)	Dellinger ^{w3}	20/120	7/57		-	-		13.8	1.36 (0.61 to 3.02)
Lundin ^{w7}	41/93	35/87		22.5	1.10 (0.78 to 1.55)	Lundin ^{w7}	28/80	12/74			-	-	- 24.8	2.16 (1.19 to 3.92)
Payen ^{w8}	48/98	46/105		30.3	1.12 (0.83 to 1.50)	Payen ^{w8}	33/89	26/90			-	_	49.7	1.28 (0.84 to 1.96)
Mehta ^{w9}	4/8	2/6		1.5	1.50 (0.40 to 5.65)	Taylor ^{w12}	12/192	8/193					- 11.7	1.51 (0.63 to 3.61)
Gerlach ^{w10}	3/20	4/20		1.4	0.75 (0.19 to 2.93)	Taylor	12/192	6/195					- 11./	1.51 (0.65 (0 5.61)
Park ^{w11}	4/11	2/6		- 1.4	1.09 (0.28 to 4.32)									
Taylor ^{w12}	44/192	39/193		18.2	1.13 (0.77 to 1.66)	Total	481	414					100.0	1.50 (1.11 to 2.02)
									0.2	0.5	1	2	5	
Total	577	509	• • • • • • • •	100.0	1.10 (0.94 to 1.30)				Increas		I.	creased in	mitala	
		c	0.1 0.2 0.5 1 2	5 10					control			oxide		
			Favours nitric oxide	Favours control										

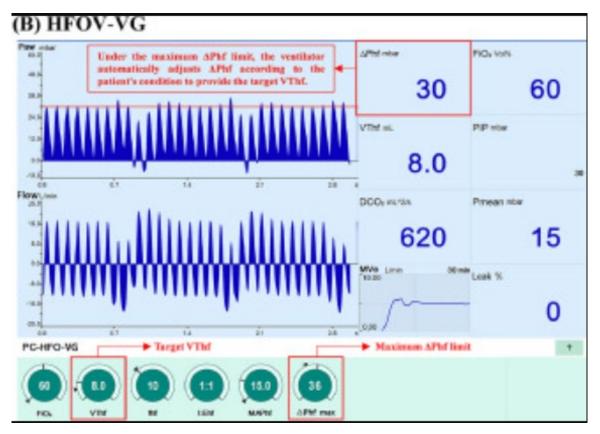
No definitive mortality benefit & increases risk of renal dysfunction Used as salvage therapy in severe hypoxemia by improving V/Q mismatch

Fixed-Dose Aerosolized Epoprostenol	Weight-based Aerosolized Epoprostenol (70 kg)						
Initial Dose	Epoprostenol (30,000 ng/mL)	Normal Saline					
20,000 ng/mL (1mg/50 mL)	Dose: 50 ng/kg/min						
(7 mL/hr	1 mL/hr					
10,000 ng/mL	Dose: 25 ng/kg/min						
(0.5 mg/50 mL)	3.5 mL/hr	4.5 mL/hr					
	Dose: 12.5 ng/kg/min						
5,000 ng/mL	1.8 mL/hr	6.2 mL/hr					
(0.25 mg/50 mL)	Dose: 6.25 ng/kg/min						
0.500 / 1	0.9 mL/hr	0.1 mL/hr					
2,500 ng/mL (0.125 mg/50 mL)	Dose: 3.13 ng/kg/min						
	0.4 mL/hr 7.6 mL/l						
 Avoids calculation errors. Dose delivered can only be changed by changing concentration of supply. 	 Provides a wide range of dose titrations using a single concentration. 						

- Can wean if stable to next lower dose as tolerated by the partial arterial oxygen pressure to fraction of inspired oxygen ratio or mean pulmonary artery pressures (if available) as often as every 4 hours.
- For more rapid titration must also purge previous concentration in infusion tubing.
- May discontinue/pause nebulization at any point to assess effect on indices of oxygenation.

Inhaled Epoprostenol Titration schedule


Dzierba AL et al. Pharmacotherapy. 2014 Mar;34(3):279-90 doi: 10.1002/phar.1365


Fancy ventilator modes

- High-frequency Oscillatory ventilation
- Inverse ratio ventilation
- Airway Pressure Release
 Ventilation (APRV)
- Neurally Adjusted Ventilatory Assist (NAVA)

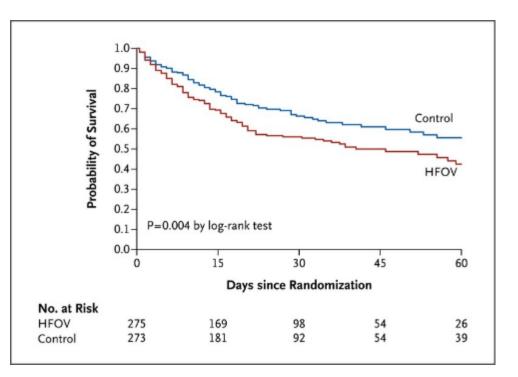
High frequency oscillatory ventilation

High-Frequency Oscillation in Early Acute Respiratory Distress Syndrome

ORIGINAL ARTICLE

Niall D. Ferguson, M.D., Deborah J. Cook, M.D., Gordon H. Guyatt, M.D., Sangeeta Mehta, M.D., Lori Hand, R.R.T., Peggy Austin, C.C.R.A., Qi Zhou, Ph.D., Andrea Matte, R.R.T., Stephen D. Walter, Ph.D., Francois Lamontagne, M.D., John T. Granton, M.D., Yaseen M. Arabi, M.D., <u>et al.</u>, for the OSCILLATE Trial Investigators and the Canadian Critical Care Trials Group* N Engl J Med 2013; 368:795-805

RCT of 548 patients


12 NEW ENGLAND JOURNAL of MEDICINE

Eligibility Criteria: Moderate-to-severe ARDS (P/F<200) AND $FiO_2 \ge 0.5$ cm of H2O

Protocol: HFOV targeting lung recruitment Vs. low V_T and high-PEEP strategy

Result:

In hospital mortality: 47% Vs. 35% (RR of death with HFOV, 1.33; 95% Cl, 1.09-1.64; p=0.005).

Airway Pressure Release Ventilation (APRV)

- Pressure-controlled
- Time cycled
- Machine-triggered
- Spontaneous breathing under continuous positive breathing pressure with brief pressure relief times
- APRV tends to increase vent days, ICU LOS, VAP
- Worsened mortality in ARDS

Ventilator dyssynchrony

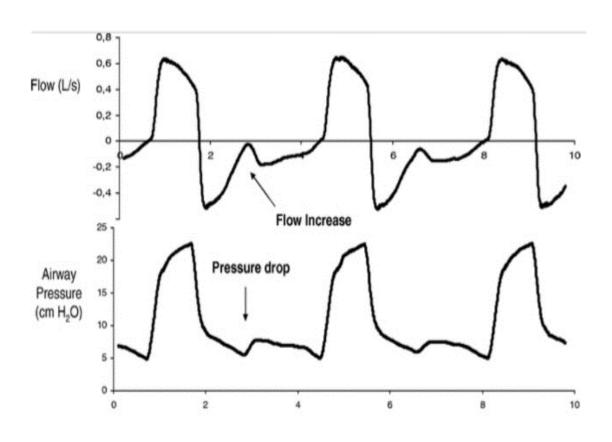
When the ventilator fights with the patient.

Mismatch between patient effort and ventilatordelivered breaths

- Timing of inspiration
- Adequate inspiratory flow for demand

Duration of inspiration

Patient-ventilator asynchrony during assisted mechanical ventilation

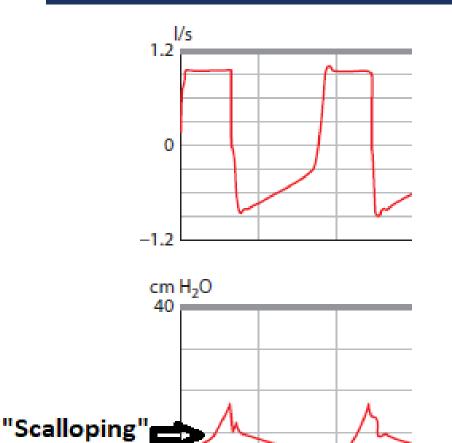

Arnaud W Thille 1, Pablo Rodriguez, Belen Cabello, François Lellouche, Laurent Brochard Intensive Care Med (2006) 32:1515–1522 DOI 10.1007/s00134-006-0301-8

62 consecutive mechanically vented patients followed prospectively

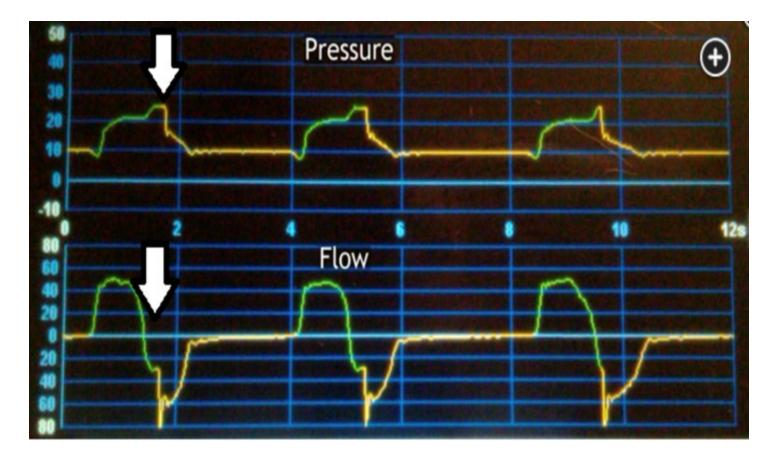
Result:

- 24% had an asynchrony index >10% of respiratory efforts
- Ineffective triggering and double-triggering were the two main asynchrony patterns
- Higher degree of asynchrony associated with a longer duration of mechanical ventilation [7.5 days vs. 25.5 days]

Ineffective Triggering- when an inspiratory effort does not trigger a ventilator breath

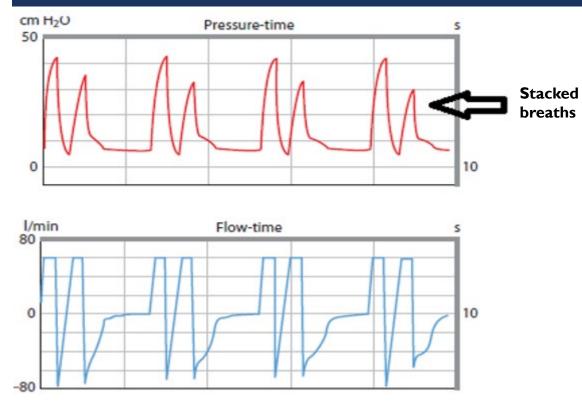


Thille A, Brochard L. (2007) Promoting Patient Ventilator Synchrony. Clin Pulm Med

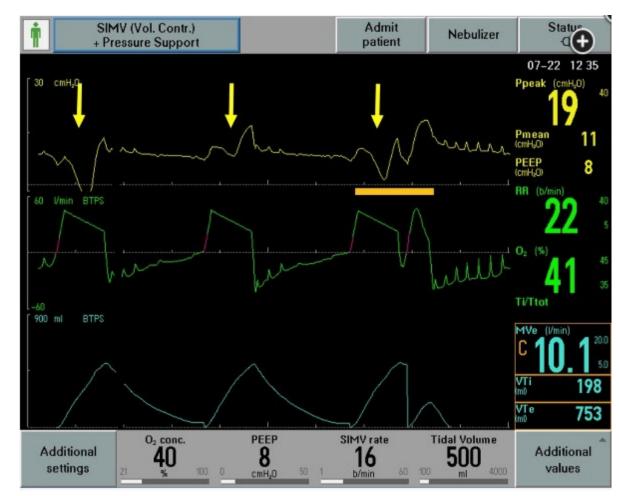

Ineffective Triggering- Management Strategies

- Increase trigger sensitivity
- Increase applied PEEP
 - Set around 75-80% of total PEEP
- Decrease tidal volume, increase flow rate
- Bronchodilators, steroids

Flow-Dyssynchrony



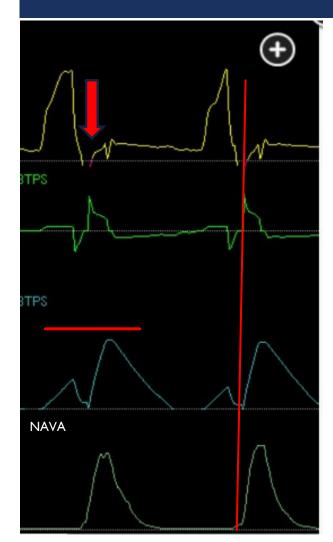
0



Source: Jesse B. Hall, Gregory A. Schmidt, John P. Kress: *Principles of Critical Care*, 4th Edition: www.accessmedicine.com Copyright © McGraw-Hill Education. All rights reserved.

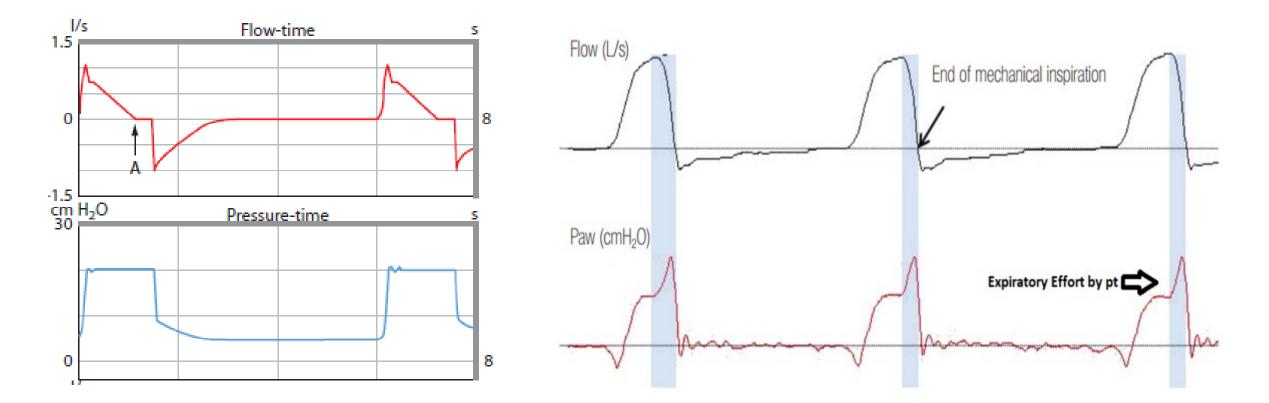
Double Triggering

It is thought that the passive mechanical thoracic insufflation triggers a patient-initiated breath as a reflex action when patient's respiratory muscle activity is strong enough to trigger a second (stacked)breath



Double Triggering- Management Strategies

Management Strategies


- If PC mode
 - can increase I-time or pressure
- IfVC mode
 - I-time can be increased by increasing tidal volume and decreasing flow rate
 - In patient with high respiratory drive, decreasing flow rate may increase inspiratory effort
 - May need sedation

Reverse triggering

- Stacked breaths of 2 distinct paired tidal volumes
- Ist breath is a time-triggered mandatory (controlled) breath, and the second breath is the result of diaphragmatic electrical activity.
- As demonstrated with the NAVA catheter- the diaphragmatic contraction starts clearly after the first breath is being delivered.

Delayed Cycling

Source: Jesse B. Hall, Gregory A. Schmidt, John P. Kress: *Principles of Critical Care*, 4th Edition: www.accessmedicine.com Copyright © McGraw-Hill Education. All rights reserved.

Antonogiannaki, E, et.al. (2017). Patient-Ventilator Dyssynchrony. Korean Journal of Critical Care Medicine.

Ventilator liberation

Importance of daily SAT / SBT Evidence for some reversal of the cause for respiratory failure

Adequate oxygenation

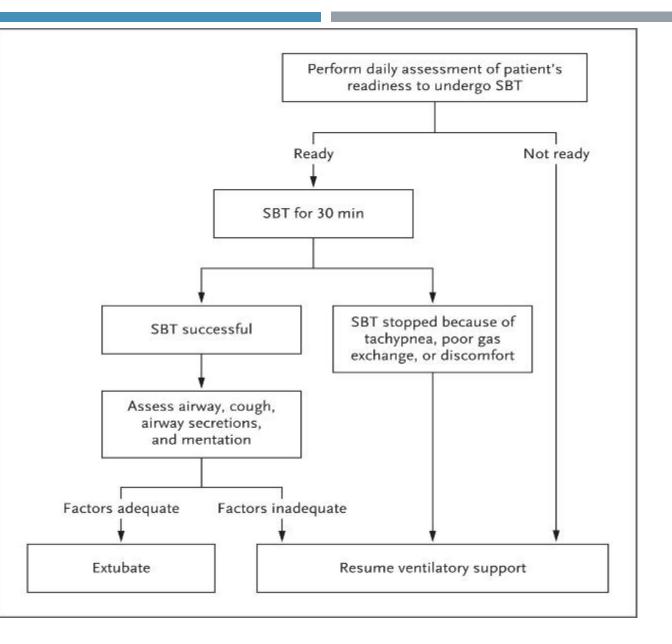
- PaO2/FiO2 ratio > 150 to 200
- PEEP: 5-8cmH₂O
- FiO2 < 0.6
- pH >7.25

Hemodynamic stability

- Absence of active myocardial ischemia
- No clinically significant hypotension

The capability to initiate an inspiratory effort

Evidence-based guidelines for weaning and discontinuing ventilatory suppor Chest. 2001 Dec (6 Suppl):375S-95S


How to assess readiness for SBT?

These "clinical assessments" are not enough to make decisions on the discontinuation of support.

One survey of 121 of intensivists using clinical judgment to assess the potential for discontinuation found a sensitivity of only 35% and a specificity of 79%

2 RCT showed intensivist did not recognize that discontinuation was feasible in almost $^{2}/_{3}$ of the subjects

Ventilator liberation

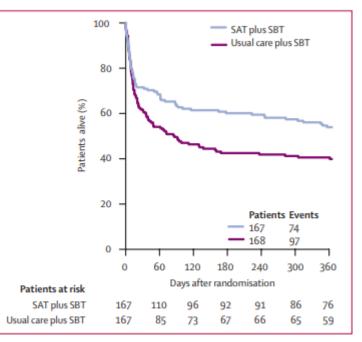
SBT- which mode and for how long?

Which Mode?

- RCT of 1135 mechanically vented pts.
 - 2-hour T-piece Vs. 30-minute PSV 8 cm H₂O
- Vent. liberation:
 - T-piece 74% liberated
 - PSV 82.3% liberated

How Long?

- 30 min vs. 120 min SBT
 - 88% vs. 85% passed
 - Reintubation rate: 13.5% vs. 13.4%


Esteban AJRCCM 1999;159:512 Subira JAMA 2019; 321:2175 ABC

Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial Lancet, 2008-01-12, Volume 371, Issue 9607, Pages 126-134

Timothy D Girard, John P Kress, Barry D Fuchs, Jason W W Thomason, William D Schweickert, Brenda T Pun, Darren B Taichman, Jan G Dunn, Anne S Pohlman, Paul A Kinniry, James C Jackson, Angelo E Canonico, Richard W Light, Ayumi K Shintani, Jennifer L Thompson, Sharon M Gordon, Jesse B Hall, Robert S Dittus, Gordon R Bernard, E Wesley Ely

336 mechanically vented patients in 4 tertiary care hospital ICU

Usual Care + SBT Vs. paired SAT + SBT

Figure 4: Survival at 1 year

Events indicate the number of deaths in each group in the year after enrolment.

	Intervention group (n=167)	Control group (n=168)	p value
Ventilator-free days*			
Mean	14.7 (0.9)	11.6 (0.9)	0.02
Median	20·0 (0 to 26·0)	8·1 (0 to 24·3)	
Time to discharge (days)			
From intensive care	9·1 (5·1 to 17·8)	12·9 (6·0 to 24·2)	0.01
From hospital	14·9 (8·9 to 26·8)	19-2 (10-3 to NA)†	0.04
28-day mortality	47 (28%)	58 (35%)	0.21
1-year mortality	74 (44%)	97 (58%)	0.01
Duration of brain dysfunction (day	s)		
Coma	2 (0 to 4)	3 (1 to 7)	0.002
Delirium	2 (0 to 5)	2 (0 to 6)	0.50
RASS at first successful SBT	-1 (-3 to 0)	-2·5 (-4 to 0)	0.0001
Complications			
Any self-extubation	16 (10%)	б (4%)	0.03
Self-extubation requiring reintubation‡	5 (3%)	3 (2%)	0.47
Reintubation‡	23 (14%)	21 (13%)	0.73
Tracheostomy	21 (13%)	34 (20%)	0.06

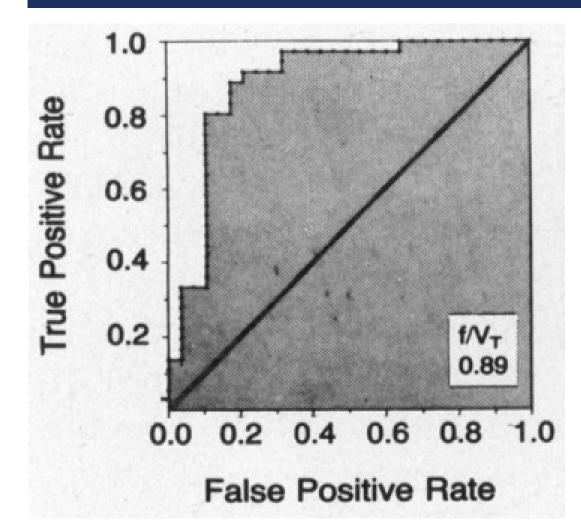
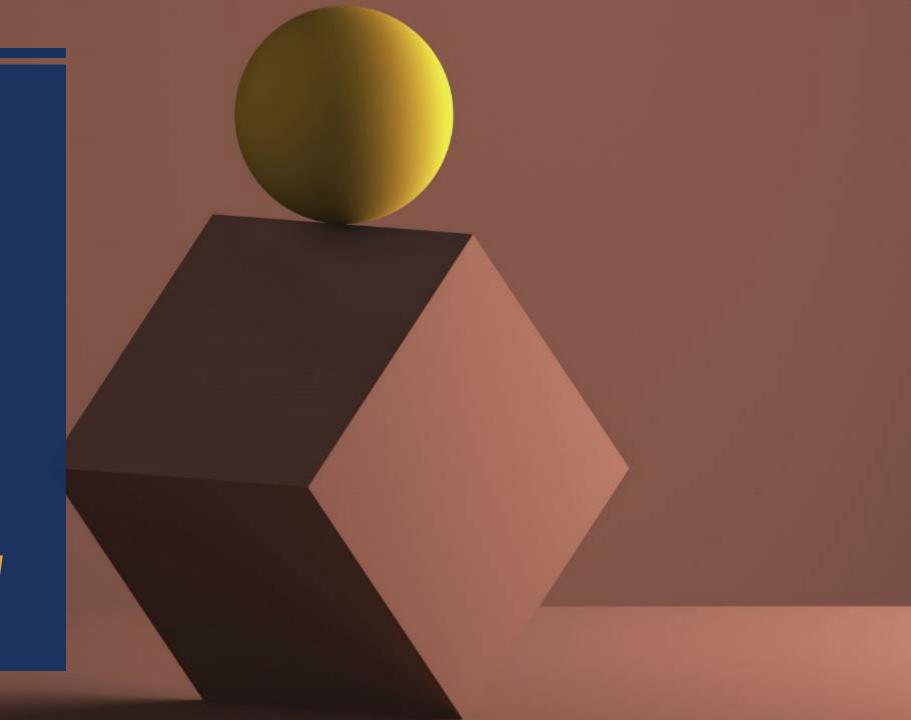

Data are mean (SD), n (%), or median (IQR). RASS=Richmond agitation-sedation scale. SAT=spontaneous awakening trial. SBT=spontaneous breathing trial. *Ventilator-free days from study day 1 to 28. †Greater than 25% of patients in the SBT group remained in the hospital at study day 28. ‡Reintubation within 48 hours of extubation.

Table 3: Main outcomes

After passing 30 min of SAT & SBT...

- Bedside evaluation:
 - Absence of a good cough (Peak cough flow \leq 60L/min)
 - Need for frequent suctioning (Respiratory secretions > 2.5 mL/h)
 - Can't complete 4 simple commands
- All 3 present: Relative risk for re-intubation is 23 (~100% failure)
- None present: 3% failure rate

RSBI (Rapid Shallow Breathing Index)


- One-minute of spontaneous breathing with T-piece with 0/0 PS
- Medical ICU patients
- f/V_T or $RR/V_T < 105$
 - PPV 78%
 - NPV 95%

Yang KL, et al. N Engl J Med. 1991;324(21):1145

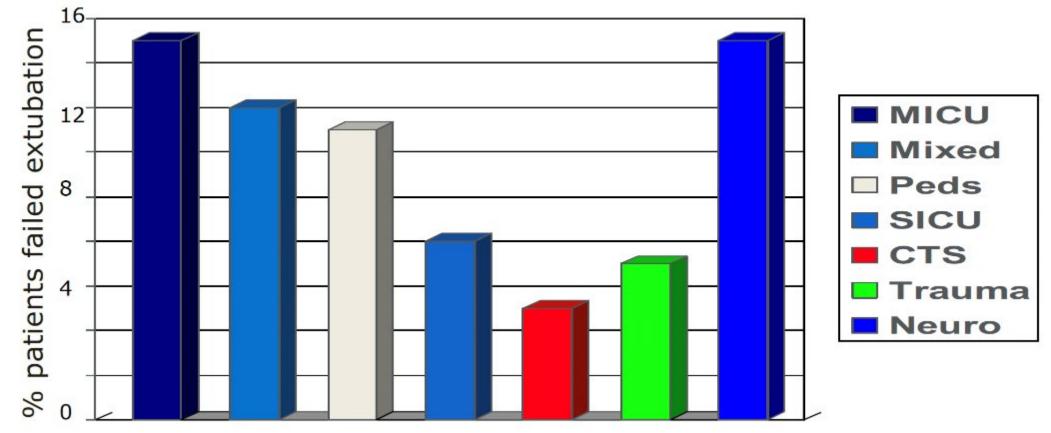
Cuff leak

- Airflow around the ETT after the cuff of the ETT is deflated
- Absence may indicate presence of laryngeal edema & risk for post-extubation stridor
- Measurement
 - Qualitatively
 - Quantitatively: Cuff leak volume <110 mL/12-24% of V_T
- Risk factors: Female, elderly, small sized patient, traumatic intubation, Large ETT, prolonged intubation etc..
- Imperfect predictor of post-extubation stridor (sensitivity 15-85%, specificity 70-99%)
- In absence of cuff leak and in presence of risk-factor, give steroid 6-8 hours before reassessing

Extubation failure Don't be afraid to fail

Implications of Extubation Delay in Brain-Injured Patients Meeting Standard Weaning Criteria

WILLIAM M. COPLIN, DAVID J. PIERSON, KATHY D. COOLEY, DAVID W. NEWELL, and GORDON D. RUBENFELD

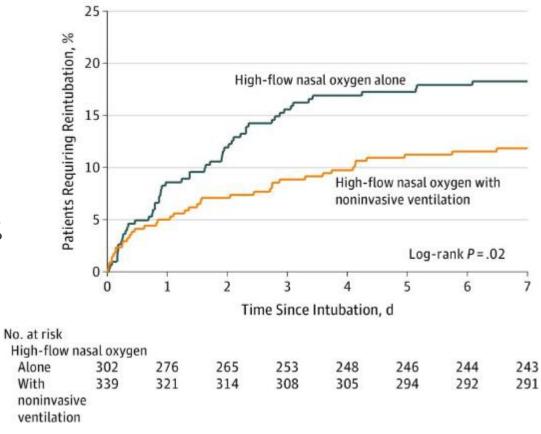

Division of Pulmonary and Critical Care Medicine and the Departments of Neurology, Neurological Surgery, and Respiratory Care, Harborview Medical Center, University of Washington, Seattle, Washington

	No Delay	Extubation Delay	p Value	
Factor, n (%)	99 (73%)	37 (27%)		
Pneumonia, n (%)	21 (21.2%)	14 (37.8%) 0.0		
Intensive care unit length of stay, d	3 (1–15)	8 (3–22)	< 0.001	
Hospital length of stay, d	11 (1–39)	17 (3–61)	0.009	
Cost, \$ (range)	41,824	70,881	< 0.001	
	(6,576–165,994)	(27,051–193,109)		
Mortality, n (%)	12 (12.1%)	10 (27.0%) 0.04		
Tracheotomy, n (%)	4 (4.0%)	0 (0.0%) 0.6		

Coplin AJRCCM 2000;161:1530

Extubation failure rate

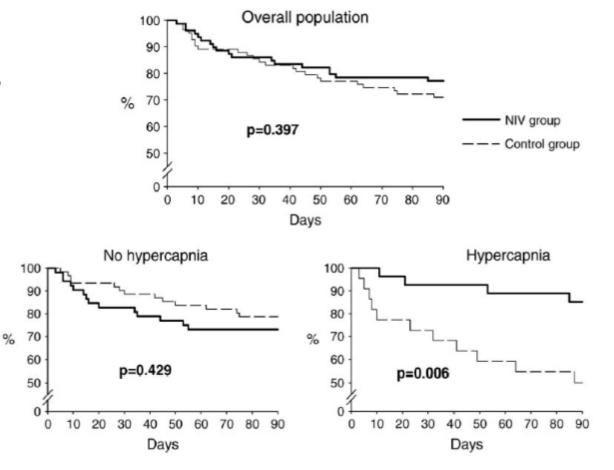
Metanalysis of 6 studies-Total ~3500 patients


Effect of Postextubation High-Flow Nasal Oxygen With Noninvasive Ventilation vs High-Flow Nasal Oxygen Alone on Reintubation Among Patients at High Risk of Extubation Failure

Thiellie AW et al. A Randomized Clinical Trial

RCT of 641 patients

Protocol: HFNC + NIV Vs. HFNC alone


Results: Reintubation rate 18.2 Vs. 11.8%

JAMA. 2019 Oct 15; 322(15): 1465–1475.

NIV to prevent extubation failure in high-risk cases

NIV may be used as a prophylactic measure in high-risk extubation to PREVENT respiratory failure

Ferrer M et al, AJRCCM 2006; 173: 164-170

NIV in post-extubation **RESPIRATORY** FAILURE

Table 2. Outcomes for the Study Groups*

Outcomes	NPPV (n = 39)	Standard Therapy (n = 42)	P Value	
Reintubation, No. (%)	28 (72)	29 (69)	.79	
Pneumonia, No. (%)	16 (41)	17 (40)	.61	
Duration of ventilation† Mean (SD)	8.4 (7.4)	17.5 (28.0)	.11	
Median (range)	6.7 (0.5-28.6)	8.9 (2.0-146.7)	.12	
ICU length of stay Mean (SD)	15.1 (10.9)	19.4 (25.0)	.32	
Median (range)	11.9 (3.6-41.7)	10.8 (2.3-152.7)	.72	
Hospital length of stay Mean (SD)	32.2 (25.4)	29.8 (28.4)	.69	
Median (range)	19 (6-111)	22 (4-162)	.51	
ICU survival, No. (%)	33 (85)	32 (76)	.34	
Hospital survival, No. (%)	27 (69)	29 (69)	.99	

*NPPV indicates noninvasive positive pressure ventilation; ICU, intensive care unit. †Duration of mechanical ventilation includes only time using conventional ventilator.

Table 4. Reasons for Reintubation, as Defined in the Protocol Guidelines, According to Study Group.			
Reason	Non- invasive Ventilation (N=55)	Standard Medical Therapy (N=51)	P Value
	no. (%)		
Lack of improvement in signs of muscle fatigue	25 (45)	23 (45)	0.97
Hypoxemia	9 (16)	15 (29)	0.11
Copious secretions	5 (9)	6 (12)	0.65
Lack of improvement in pH or partial pressure of carbon dioxide	8 (15)	3 (6)	0.13
Changes in mental status	4 (7)	2 (4)	0.45
Hypotension	4 (7)	2 (4)	0.45

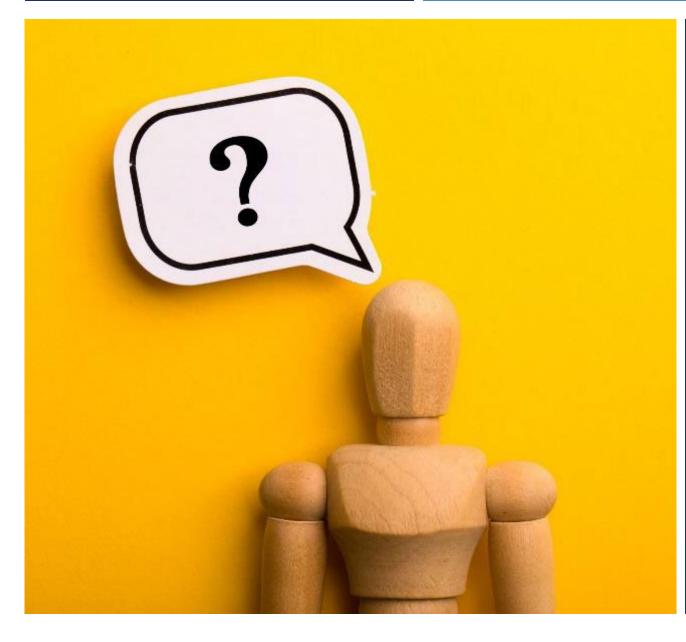
Independent Effects of Etiology of Failure and Time to Reintubation on Outcome for Patients Failing Extubation

SCOTT K. EPSTEIN and RONALD L. CIUBOTARU

Pulmonary and Critical Care Division, Department of Medicine, Tupper Research Institute, New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts

Am J Respir Crit Care Med. 1998 Aug; 158(2):489-93

TIME TO REINTUBATION


Time to Reintubation* (<i>h</i>)	Patients [†]		Deaths [‡]	
	(<i>n</i>)	(%)	(<i>n</i>)	(%)
0–12	25	33	6	24
13–24	18	25	7	39
25–48	18	25	9	50
49–72	13	17	9	69

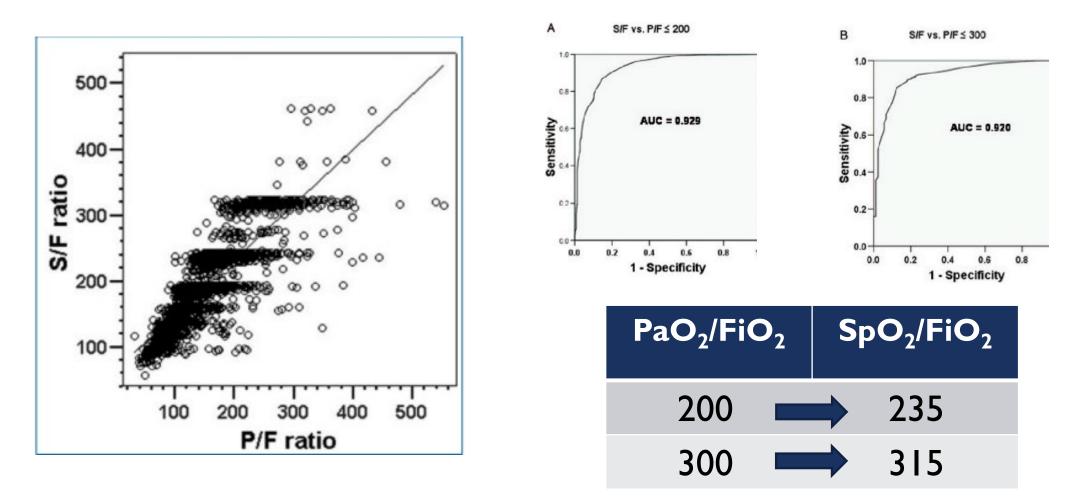
TIME TO REINTUBATION

doi: 10.1164/ajrccm.158.2.9711045

Take Home Message

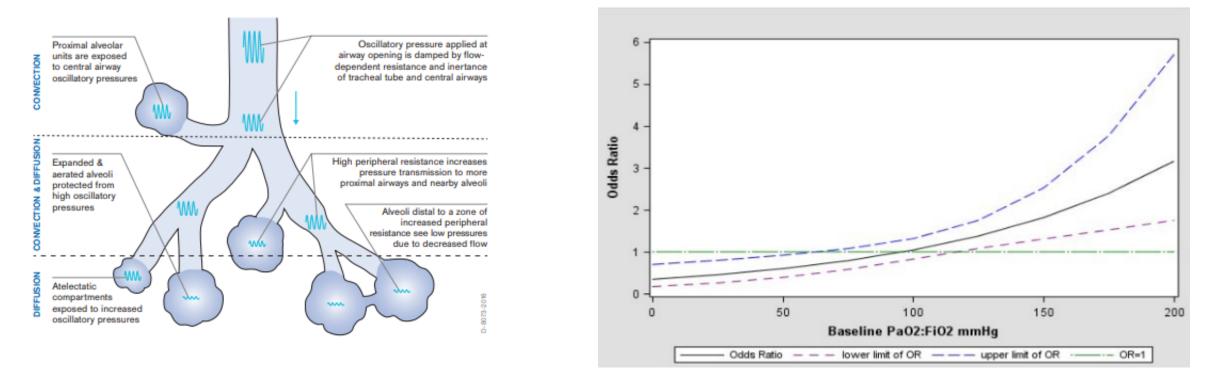
- NIV decreases intubation rate in hypercapnic respiratory failure. Use HFNC for hypoxic ones.
- Lung protective ventilator strategy- low V_T , adequate PEEP, maintain Pplat <30, Driving pressure <15
- Proning improves survival in ARDS
- Early paralytics have no mortality benefit; may be used in severe hypoxemia/ ventilator dyssynchrony
- APRV & iEPO could be used as salvage therapy for refractory hypoxemia in ARDS
- Be aware of different types of ventilator dyssynchrony- try to adjust ventilator as per patient's need
- Daily paired SAT + SBT decreases mortality, reduces ICU/hospital LOS
- Weaning parameters are not perfect; trust your clinical judgement. Steroid before extubation without cuff leak
- Avoid extubation delay; 12-15% extubation failure rate in medical or mixed ICU is acceptable
- Extubate patients with baseline hypercapnia to NIV; may consider HFNC for low-risk patients; but once patient is in respiratory distress- don't delay reintubation

Thank You


NIV recommendation in obstructive lung disease

Lim WJ, et al. Cochrane Database Syst Rev. 2012. Ram FS, et al. Cochrane Database Syst Rev. 2004. For asthma: short trial (\leq 2h) reasonable but do not delay intubation, monitor closely

For COPD: Preferred initial mode of ventilatory support


- Indications:
 - Severe dyspnea / increased work of breathing
 - Respiratory Acidosis (pH < 7.35 with PaCO2 > 45mmHg)
- Contraindications:
 - Impaired mental status/aspiration risk
 - Anatomic contraindications

Can SpO_2/FiO_2 replace PaO_2/FiO_2 ?

Rice TW. CHEST, 2007;132:410

High frequency oscillatory ventilation

Metanalysis of 3 trials including 1552 subjects

Overall P/F = 114

Mortality depended on severity of hypoxemia

HFOV increases mortality for most patients, but may improve survival with severe hypoxemia (P/F <100)

Auto-triggering

- Ventilator delivers a breath in absence of patient effort
- Etiologies
 - Trigger sensitivity too high
 - Water condensation in the circuit
 - Cardiac oscillations
 - Leak from circuit
 - Air leak from chest tube